Фізика і хімія твердого тіла (Aug 2022)

Enhanced photocatalytic and Antibacterial Activity of Copper oxide Nanoparticles Synthesized by Facile Combustion methods from Mussaendafrondosa Plant Extract

  • N. Babitha,
  • S. Rosy Christy,
  • Geetha Palani,
  • M. Gurumoorthy,
  • Karthik Kannan,
  • V. Chithambaram

DOI
https://doi.org/10.15330/pcss.23.3.443-449
Journal volume & issue
Vol. 23, no. 3
pp. 443 – 449

Abstract

Read online

Microwave heating (MHM) and mutated sol-gel (SGM) mechanisms were used to effectively create CuO samples with two dissimilar morphologies, such as nanoparticles (CuO-NPs) and nanorods (CuO-NRs), using Mussaendafrondosalinn plant extract as the bio-reducing operator. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) investigations were used to analyze the sample's structure, pureness, and morphological characteristics. UV-Visible diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy methodologies were used to analyze optical properties and calculate bandgap energy. The bandgap of the samples was measured using the Kubelka-Munk mechanism, and it was found to be 2.74eV and 2.33eV for CuO-NPs and CuO-NRs, correspondingly. CuO-NPs and CuO-NRs were investigated for antibacterial activity versus each Gram-positive and Gram-negative microorganisms using a modified disc diffusion method. When correlated to the sample CuO nanorods, the antibacterial study confirms that the sample CuO nanoparticles are high-grade antibacterial agents. Using solar lighting, the photocatalytic activity of CuO nano-reactants (CuO-NPs and CuO-NRs) for the degradation of methylene blue (MB) dye was investigated, and the findings revealed that CuO-NPs with tinier particle sizes degraded MB more than CuONRs.

Keywords