PLoS ONE (Jan 2016)

An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition.

  • Brian Egan,
  • Chih-Chi Yuan,
  • Madeleine Lisa Craske,
  • Paul Labhart,
  • Gulfem D Guler,
  • David Arnott,
  • Tobias M Maile,
  • Jennifer Busby,
  • Chisato Henry,
  • Theresa K Kelly,
  • Charles A Tindell,
  • Suchit Jhunjhunwala,
  • Feng Zhao,
  • Charlie Hatton,
  • Barbara M Bryant,
  • Marie Classon,
  • Patrick Trojer

DOI
https://doi.org/10.1371/journal.pone.0166438
Journal volume & issue
Vol. 11, no. 11
p. e0166438

Abstract

Read online

Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples.