Symmetry (Jul 2018)

Probability of Conjunction Estimation for Analyzing the Electromagnetic Environment Based on a Space Object Conjunction Methodology

  • Asad Husnain Baqar,
  • Tao Jiang,
  • Ishfaq Hussain,
  • Ghulam Farid

DOI
https://doi.org/10.3390/sym10070255
Journal volume & issue
Vol. 10, no. 7
p. 255

Abstract

Read online

The introduction of the space object conjunction method in electromagnetic compatibility modeling and simulation is quite a novel concept. It is useful for the stochastic analysis of an electromagnetic (EM) environment which is based on the probability of conjunction assessment. The space conjunction methodology is anticipated as the frontline defense for the protection of active satellites in space. EM congestion occurs in an environment with the increase in the number of operational EM devices. In a theoretical sense, this congestion is analogous to the space conjunction. Therefore, the space conjunction model can be applied in the EM scenarios. In this paper, we have investigated the application of the defined conjunction model by using the analytical expression of the probability of electromagnetic conjunction, which is based on the orbital parameters of the system under test. Additionally, we have elaborated the influence of these orbital parameters on the probability of conjunction. The simulations have been performed by considering different EM scenarios and the results are validated by using Monte Carlo simulations. The results show that errors in the analytical and Monte Carlo simulations are within a 1% range, which makes the analytical model effective. Computationally, the proposed analytical model is cost effective as compared to the numerical method, i.e., Monte Carlo. Moreover, from the results, it has been validated that the probability of conjunction increases with the increase in transmitted power and decreases with the compatible threshold limit of the receiving system, thus, making this method useful for analyzing the electromagnetic environment and as a frontline safety tool for electromagnetic systems.

Keywords