Algorithms (Aug 2024)
Joint Optimization of Service Migration and Resource Allocation in Mobile Edge–Cloud Computing
Abstract
In the rapidly evolving domain of mobile edge–cloud computing (MECC), the proliferation of Internet of Things (IoT) devices and mobile applications poses significant challenges, particularly in dynamically managing computational demands and user mobility. Current research has partially addressed aspects of service migration and resource allocation, yet it often falls short in thoroughly examining the nuanced interdependencies between migration strategies and resource allocation, the consequential impacts of migration delays, and the intricacies of handling incomplete tasks during migration. This study advances the discourse by introducing a sophisticated framework optimized through a deep reinforcement learning (DRL) strategy, underpinned by a Markov decision process (MDP) that dynamically adapts service migration and resource allocation strategies. This refined approach facilitates continuous system monitoring, adept decision making, and iterative policy refinement, significantly enhancing operational efficiency and reducing response times in MECC environments. By meticulously addressing these previously overlooked complexities, our research not only fills critical gaps in the literature but also enhances the practical deployment of edge computing technologies, contributing profoundly to both theoretical insights and practical implementations in contemporary digital ecosystems.
Keywords