Annals of Glaciology (Dec 2020)

Trends, abrupt shifts and interannual variability of the Arctic Wintertime Seasonal Sea Ice from 1979 to 2019

  • Guanghua Hao,
  • Jie Su,
  • Timo Vihma,
  • Fei Huang

DOI
https://doi.org/10.1017/aog.2020.68
Journal volume & issue
Vol. 61
pp. 441 – 453

Abstract

Read online

The Arctic winter seasonal sea ice (WSSI) concentration from 1979 to 2019 is derived from passive microwave data. Based on Empirical Orthogonal Function (EOF) analysis, the WSSI time series includes regionally different trends, abrupt shifts and interannual variations. The time series of the first EOF mode (PC1) mainly represents the WSSI trend, which is characterized by an increase, particularly in the Pacific sector. PC1 confirms two abrupt shifts in WSSI in 1989 and 2007, with a variance of 31%. After 2007, the large-scale atmospheric circulation anomaly shows a strengthened wavenumber 3 structure at high latitudes associated with a mid-tropospheric low-pressure anomaly in central and western Siberia and a high-pressure anomaly in eastern Siberia in summer and autumn. These patterns have promoted the increased transport of moist static energy to the central Arctic and contributed to increased near-surface air temperatures that may enhance ice melting in summer and reduce ice growth in autumn and winter. The changes in ice melt and growth have had opposite effects in the Pacific and Atlantic sectors: WSSI has increased in the Pacific sector due to the replacement of multi-year ice by WSSI, and decreased in the Atlantic sector due to the replacement of WSSI by open water.

Keywords