High-frequency neuronal signal better explains multi-phase BOLD response
Qingqing Zhang,
Samuel R. Cramer,
Kevin L. Turner,
Thomas Neuberger,
Patrick J. Drew,
Nanyin Zhang
Affiliations
Qingqing Zhang
Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
Samuel R. Cramer
The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
Kevin L. Turner
Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
Thomas Neuberger
Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA
Patrick J. Drew
Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA; Departments of Engineering Science and Mechanics, Neurosurgery, and Biology, The Pennsylvania State University, University Park, USA
Nanyin Zhang
Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA; Corresponding author at: Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, W-341 Millennium Science Complex, University Park, PA 16802, USA.
Visual stimulation-evoked blood-oxygen-level dependent (BOLD) responses can exhibit more complex temporal dynamics than a simple monophasic response. For instance, BOLD responses sometimes include a phase of positive response followed by a phase of post-stimulus undershoot. Whether the BOLD response during these phases reflects the underlying neuronal signal fluctuations or is contributed by non-neuronal physiological factors remains elusive. When presenting blocks of sustained (i.e. DC) light ON-OFF stimulations to unanesthetized rats, we observed that the response following a decrease in illumination (i.e. OFF stimulation-evoked BOLD response) in the visual cortices displayed reproducible multiple phases, including an initial positive BOLD response, followed by an undershoot and then an overshoot before the next ON trial. This multi-phase BOLD response did not result from the entrainment of the periodic stimulation structure. When we measured the neural correlates of these responses, we found that the high-frequency band from the LFP power (300 – 3000 Hz, multi-unit activity (MUA)), but not the power in the gamma band (30 – 100 Hz) exhibited the same multiphasic dynamics as the BOLD signal. This study suggests that the post-stimulus phases of the BOLD response can be better explained by the high-frequency neuronal signal.