Animals (Apr 2024)
Impact of <i>Bacillus licheniformis</i>-Fermented Products on Growth and Productivity in Heat-Stressed Laying Ducks
Abstract
The purpose of this study was to assess the impact of various concentrations of Bacillus licheniformis-fermented products (BLFP) on the growth and productivity of laying ducks (Anas platyrhynchos) subjected to heat stress during eight weeks of a feeding trial. A total of 150 one-day-old Brown Tsaiya ducks of both sexes were divided into five groups, with each group having three replicates and 10 ducks each for evaluation of growth performance. The treatment groups received dietary supplements of BLFP at levels of 0.1%, 0.2%, and 0.3%, along with a group receiving flavomycin (F) at 5 ppm, all over a 24-week period. The fermentation process in this study utilized a B. licheniformis strain (ATCC 12713) for the production of the spores through solid-state fermentation. The control group was given a basal diet consisting of yellow corn and soybean meal. The results showed that as compared to the flavomycin group, ducks in the 0.3% BLFP group had significantly higher body weights and better feed conversion rates. In addition, during the three weeks, the BLFP group showed higher feed consumption as compared to the control group. The jejunum villi length was significantly increased in the 0.2% BLPF group as compared to the control and flavomycin groups. This study also found that the flavomycin group had a significantly higher egg conversion rate, while the 0.1–0.3% BLFP groups had improved feed intake and the 0.3% group had significantly enhanced egg yolk color. Additionally, the 0.2% BLFP group showed substantial decreases in IL-1β, TNF-α, IL-6, and IL-10 levels in the liver as well as an uptick in the tight junction protein Occludin gene expression in the colon when compared to the control group. Furthermore, the expression of the heat shock protein 70 in the gut upregulated in the 0.1% and 0.2% BLFP groups. In conclusion, these observations demonstrate that dietary supplementation of 0.2% BLFP is an ideal concentration to increase gut morphology, alleviate inflammatory response, and promote gut integrity in heat-stressed laying ducks.
Keywords