Plant Communications (Jan 2023)

RUP2 facilitates UVR8 redimerization via two interfaces

  • Lixia Wang,
  • Yidong Wang,
  • Hongfei Chang,
  • Hui Ren,
  • Xinquan Wu,
  • Jia Wen,
  • Zeyuan Guan,
  • Ling Ma,
  • Liang Qiu,
  • Junjie Yan,
  • Delin Zhang,
  • Xi Huang,
  • Ping Yin

Journal volume & issue
Vol. 4, no. 1
p. 100428

Abstract

Read online

The plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) exists as a homodimer in its inactive ground state. Upon UV-B exposure, UVR8 monomerizes and interacts with a downstream key regulator, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA (COP1/SPA) E3 ubiquitin ligase complex, to initiate UV-B signaling. Two WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion, completing the UVR8 photocycle. Here, we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8W285A complex (2.0 Å). RUP2 and UVR8W285A formed a heterodimer via two distinct interfaces, designated Interface 1 and 2. The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion. The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain. Disruption of Interface 2 impaired UV-B induced photomorphogenic development in Arabidopsis thaliana. Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization. Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8, marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.

Keywords