Frontiers in Pharmacology (Oct 2024)
Identification of antibacterial constituents from Rhododendron simsii Planch with an activity-guided method
Abstract
Bacterial infections and antibiotic resistance pose significant public health challenges globally. Natural products serve as valuable sources for discovering antimicrobial agents. Rhododendron simsii Planch, a folk medicine, is traditionally used to treat various inflammatory diseases. In this study, we investigated the antibacterial metabolites derived from R. simsii Planch. Rhodosimsiin A (1), bearing a 1,5-seco-1,6 and 3,6-epoxy grayanane diterpene skeleton, representing a novel 5/6/7/6/5 pentacyclic ring system, and 3β,16α-dihydroxy-6β-ethoxy-14β-acetoxy-grayan-1(5)-ene-10-one (4), which represents the first example of the degradation of C-20 and carbonylation in C-10 diterpenoid, together with two new grayanane diterpenes (2−3), three new triterpenes (13−15), and known analogs (5−12, 16−30), were isolated from the leaves of R. simsii Planch by using the bioassay-guided method. Their structures were elucidated by comprehensive spectroscopic analyses, and absolute configurations were established by single-crystal X-ray diffraction and calculated ECD spectra. Compounds 14, 15, 18, 20, 27, 28, and 30 exhibited potent antibacterial activity with an MIC50 of 1.4–24.3 μg/mL against Staphylococcus aureus. The findings of this research indicate that secondary metabolites derived from R. simsii Planch are promising natural antimicrobial candidates.
Keywords