PeerJ (Jun 2024)

Genomic organization and expression profiles of nitrogen assimilation genes in Glycine max

  • Hind Abdelmonim Elsanosi,
  • Tiantian Zhu,
  • Guisheng Zhou,
  • Li Song

DOI
https://doi.org/10.7717/peerj.17590
Journal volume & issue
Vol. 12
p. e17590

Abstract

Read online Read online

Background Glutamine synthetase (GS), glutamate synthase (GOGAT), and nitrate reductase (NR) are key enzymes involved in nitrogen assimilation and metabolism in plants. However, the systematic analysis of these gene families lacked reports in soybean (Glycine max (L.) Merr.), one of the most important crops worldwide. Methods In this study, we performed genome-wide identification and characterization of GS, GOGAT, and NR genes in soybean under abiotic and nitrogen stress conditions. Results We identified a total of 10 GS genes, six GOGAT genes, and four NR genes in the soybean genome. Phylogenetic analysis revealed the presence of multiple isoforms for each gene family, indicating their functional diversification. The distribution of these genes on soybean chromosomes was uneven, with segmental duplication events contributing to their expansion. Within the nitrogen assimilation genes (NAGs) group, there was uniformity in the exon-intron structure and the presence of conserved motifs in NAGs. Furthermore, analysis of cis-elements in NAG promoters indicated complex regulation of their expression. RT-qPCR analysis of seven soybean NAGs under various abiotic stresses, including nitrogen deficiency, drought-nitrogen, and salinity, revealed distinct regulatory patterns. Most NAGs exhibited up-regulation under nitrogen stress, while diverse expression patterns were observed under salt and drought-nitrogen stress, indicating their crucial role in nitrogen assimilation and abiotic stress tolerance. These findings offer valuable insights into the genomic organization and expression profiles of GS, GOGAT, and NR genes in soybean under nitrogen and abiotic stress conditions. The results have potential applications in the development of stress-resistant soybean varieties through genetic engineering and breeding.

Keywords