PLoS ONE (Feb 2011)

The use of anti-VDAC2 antibody for the combined assessment of human sperm acrosome integrity and ionophore A23187-induced acrosome reaction.

  • Bianjiang Liu,
  • Peng Wang,
  • Zengjun Wang,
  • Wei Zhang

DOI
https://doi.org/10.1371/journal.pone.0016985
Journal volume & issue
Vol. 6, no. 2
p. e16985

Abstract

Read online

Voltage-dependent anion channel (VDAC) is mainly located in the mitochondrial outer membrane and participates in many biological processes. In mammals, three VDAC subtypes (VDAC1, 2 and 3) have been identified. Although VDAC has been extensively studied in various tissues and cells, there is little knowledge about the distribution and function of VDAC in male mammalian reproductive system. Several studies have demonstrated that VDAC exists in mammalian spermatozoa and is implicated in spermatogenesis, sperm maturation, motility and fertilization. However, there is no knowledge about the respective localization and function of three VDAC subtypes in human spermatozoa. In this study, we focused on the presence of VDAC2 in human spermatozoa and its possible role in the acrosomal integrity and acrosome reaction using specific anti-VDAC2 monoclonal antibody for the first time. The results exhibited that native VDAC2 existed in the membrane components of human spermatozoa. The co-incubation of spermatozoa with anti-VDAC2 antibody did not affect the acrosomal integrity and acrosome reaction, but inhibited ionophore A23187-induced intracellular Ca(2+) increase. Our study suggested that VDAC2 was located in the acrosomal membrane or plasma membrane of human spermatozoa, and played putative roles in sperm functions through mediating Ca(2+) transmembrane transport.