Journal of Vascular Anomalies (Dec 2023)

Trametinib Inhibits Lymphatic Vessel Invasion of Bone in a Mouse Model of Gorham-Stout Disease

  • Anna L. McCarter,
  • Michael T. Dellinger

DOI
https://doi.org/10.1097/JOVA.0000000000000070
Journal volume & issue
Vol. 4, no. 4
p. e070

Abstract

Read online

Objective:. Gorham-Stout disease (GSD) is a rare lymphatic anomaly that can be caused by somatic activating mutations in KRAS. This discovery has led investigators to suggest that MEK inhibitors could be a novel treatment for GSD. However, the effect of MEK inhibitors on bone disease in animal models of GSD has not been investigated. We recently reported that Osx-tTA;TetO-Vegfc mice exhibit a phenotype that resembles GSD. Osx-tTA;TetO-Vegfc mice overexpress vascular endothelial growth factor-C (VEGF-C) in bone, which stimulates the development of lymphatic vessels in bone and the gradual loss of cortical bone. The objective of this study was to characterize the effect of trametinib, an FDA-approved MEK1/2 inhibitor, on lymphangiogenesis and osteolysis in Osx-tTA;TetO-Vegfc mice. Methods:. Immunoblotting was performed to assess the effect of trametinib on VEGF-C-induced phosphorylation of ERK1/2, AKT, and S6 in primary human lymphatic endothelial cells. Prevention and intervention experiments were performed to determine the effect of trametinib on lymphangiogenesis and osteolysis in Osx-tTA;TetO-Vegfc mice. Results:. We found that trametinib blocked VEGF-C-induced phosphorylation of ERK1/2 in primary human lymphatic endothelial cells. We also found that trametinib prevented VEGF-C-induced lymphatic invasion of bone and cortical bone loss in Osx-tTA;TetO-Vegfc mice. Additionally, trametinib slowed the progression of disease in Osx-tTA;TetO-Vegfc mice with established disease. However, it did not reverse disease in Osx-tTA;TetO-Vegfc mice. Conclusion:. Our results show trametinib impacts bone disease in Osx-tTA;TetO-Vegfc mice. These findings further support the testing of MEK inhibitors in patients with GSD and other RAS pathway-driven complex lymphatic anomalies with bone involvement.