PLoS ONE (Jan 2019)

Role of SCTR/AT1aR heteromer in mediating ANGII-induced aldosterone secretion.

  • Juan Bai,
  • Karthi Duraisamy,
  • Sarah O K Mak,
  • Ahmed Allam,
  • Jamaan Ajarem,
  • Zhang Li,
  • Billy K C Chow

DOI
https://doi.org/10.1371/journal.pone.0222005
Journal volume & issue
Vol. 14, no. 9
p. e0222005

Abstract

Read online

The involvement of secretin (SCT) and its receptor (SCTR) in angiotensin II (ANGII)-mediated osmoregulation by forming SCTR/ angiotensin II type 1 receptor (AT1R) heteromer is well established. In this study, we demonstrated that SCTR/AT1R complex can mediate ANGII-induced aldosterone secretion/release through potentiating calcium mobilization. Through IHC and cAMP studies, we showed the presence of functional SCTR and AT1R in the primary zona glomerulosa (ZG) cells of C57BL/6N (C57), and functional AT1R and non-functional SCTR in SCTR knockout (SCTR-/-) mice. Calcium mobilization studies revealed the important role of SCTR on ANGII-mediated calcium mobilization in adrenal gland. The fluo4-AM loaded primary adrenal ZG cells from the C57 mice displayed a dose-dependent increase in intracellular calcium influx ([Ca2+]i) when exposed to ANGII but not from the SCTR-/- ZG cells. Synthetic SCTR transmembrane (TM) peptides STM-II/-IV were able to alter [Ca2+]i in C57 mice, but not the mice with mutated STM-II/-IV (STM-IIm/IVm) peptides. Through enzyme immunoassay (EIA), we measured the aldosterone release from primary ZG cells of both C57 and SCTR-/- mice by exposing them to ANGII (10nM). SCTR-/- ZG cells showed impaired ANGII-induced aldosterone secretion compared to the C57 mice. TM peptide, STM-II hindered the aldosterone secretion in ZG cells of C57 mice. These findings support the involvement of SCTR/AT1R heterodimer complex in aldosterone secretion/release through [Ca2+]i.