Open Geosciences (Nov 2018)

Land deformation associated with exploitation of groundwater in Changzhou City measured by COSMO-SkyMed and Sentinel-1A SAR data

  • Chen Deliang,
  • Lu Yanyan,
  • Jia Dongzhen

DOI
https://doi.org/10.1515/geo-2018-0054
Journal volume & issue
Vol. 10, no. 1
pp. 678 – 687

Abstract

Read online

The Urban Agglomeration in Yangtze River Delta is one of the most important economic and industrial regions in China. The City of Changzhou is one of the most important industrial citys in Yangtze River Delta Urban Agglomeration. Activities here include groundwater exploration. Groundwater overexploitation has contributed to the major land deformation in this city. The severity and magnitude of land deformation over time were investigated in Changzhou City. A Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology, provides a useful tool in measuring urban land deformation. In this study, a time series of COSMO-SkyMed and Sentinel-1A SAR images covering Changzhou City were acquired. SBAS-InSAR imaging technique was used to survey the extent and severity of land deformation associated with the exploitation of groundwater in Changzhou City. Leveling data was used to validate the SBAR-InSAR productions, the error of SBAR-InSAR annual subsidence results was within 2 mm. The results showed that three main land subsidence zones were detected at Xinbei, Tianning and Wujin District. Four subsidence points were selected to analyze the temporal and spatial evolution characteristics of land subsidence. The subsidence rate of P1 to P4 was −2.48 mm/year, −12.78 mm/year, −18.09 mm/year, and −12.69 mm/year respectively. Land subsidence over Changzhou showed a trend of slowing down from 2011 to 2017, especially in Wujin District. SBAR-InSAR derived land deformation that correlates with the water level change in six groundwater stations. Indicated that with groundwater rebound, the land rebound obviously, and the maximum rebound vale reached 9.13 mm.

Keywords