Cell Communication and Signaling (Jun 2010)
The heparan sulfate co-receptor and the concentration of fibroblast growth factor-2 independently elicit different signalling patterns from the fibroblast growth factor receptor
Abstract
Abstract Background The fibroblast growth factor receptor (FGFR) interprets concentration gradients of FGF ligands and structural changes in the heparan sulfate (HS) co-receptor to generate different cellular responses. However, whether the FGFR generates different signals is not known. Results We have previously shown in rat mammary fibroblasts that in cells deficient in sulfation, and so in HS co-receptor, FGF-2 can only stimulate a transient phosphorylation of p42/44 MAPK and so cannot stimulate DNA synthesis. Here we demonstrate that this is because in the absence of HS, FGF-2 fails to stimulate the phosphorylation of the adaptor FGFR substrate 2 (FRS2). In cells possessing the HS co-receptor, FGF-2 elicits a bell-shaped dose response: optimal concentrations stimulate DNA synthesis, but supramaximal concentrations (≥ 100 ng/mL) have little effect. At optimal concentrations (300 pg/mL) FGF-2 stimulates a sustained dual phosphorylation of p42/44 MAPK and tyrosine phosphorylation of FRS2. In contrast, 100 ng/mL FGF-2 only stimulates a transient early peak of p42/44 MAPK phosphorylation and fails to stimulate appreciably the phosphorylation of FRS2 on tyrosine. Conclusions These results suggest that the nature of the FGFR signal produced is determined by a combination of the HS co-receptor and the concentration of FGF ligand. Both the phosphorylation of the adaptor FRS2, the kinetics (sustained or transient) of phosphorylation of p42/44(MAPK) are varied, and so differing cellular responses are produced.