IBRO Neuroscience Reports (Jun 2024)
Chronic chemogenetic activation of hippocampal progenitors enhances adult neurogenesis and modulates anxiety-like behavior and fear extinction learning
Abstract
Adult hippocampal neurogenesis is a lifelong process that involves the integration of newborn neurons into the hippocampal network, and plays a role in cognitive function and the modulation of mood-related behavior. Here, we sought to address the impact of chemogenetic activation of adult hippocampal progenitors on distinct stages of progenitor development, including quiescent stem cell activation, progenitor turnover, differentiation and morphological maturation. We find that hM3Dq-DREADD-mediated activation of nestin-positive adult hippocampal progenitors recruits quiescent stem cells, enhances progenitor proliferation, increases doublecortin-positive newborn neuron number, accompanied by an acceleration of differentiation and morphological maturation, associated with increased dendritic complexity. Behavioral analysis indicated anxiolytic behavioral responses in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors at timepoints when newborn neurons are predicted to integrate into the mature hippocampal network. Furthermore, we noted an enhanced fear memory extinction on a contextual fear memory learning task in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors. Our findings indicate that hM3Dq-DREAD-mediated chemogenetic activation of adult hippocampal progenitors impacts distinct aspects of hippocampal neurogenesis, associated with the regulation of anxiety-like behavior and fear memory extinction.