International Journal of Nanomedicine (Apr 2017)

A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection

  • Wang J,
  • Zhou H,
  • Guo G,
  • Cheng T,
  • Peng X,
  • Mao X,
  • Li J,
  • Zhang X

Journal volume & issue
Vol. Volume 12
pp. 3121 – 3136

Abstract

Read online

Jiaxing Wang,1,* Huaijuan Zhou,2,* Geyong Guo,1 Tao Cheng,1 Xiaochun Peng,1 Xin Mao,1 Jinhua Li,2–4 Xianlong Zhang1 1Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 3Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 4University of Chinese Academy of Sciences, Beijing, China *These authors contributed equally to this work Abstract: Bloodstream infection, especially with implants involved, is an often life-threatening condition with high mortality rates, imposing a heavy burden on patients and medical systems. Herein, we firstly deposited homogeneous vanadium metal, V2O3, VO2, and V2O5 nanofilms on quartz glass by magnetron sputtering. Using these platforms, we further investigated the potential antimicrobial efficiency of these nano-VOx films and the interactions of human erythrocytes and bacteria (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa) with our samples in a novel cell–bacteria coculture model. It was demonstrated that these nano-VOx precipitated favorable antibacterial activity on both bacteria, especially on S. aureus, and this effect increased with higher vanadium valence. A possible mechanism accountable for these results might be elevated levels of vanadium-induced intracellular reactive oxygen species. More importantly, based on hemolysis assays, our nano-VOx films were found to be able to kill prokaryotic cells but were not toxic to mammalian cells, holding the potential for the prevention of implant-related hematogenous infections. As far as we know, this is the first report wherein such nano-VOx films have assisted human erythrocytes to combat bacteria in a valence-dependent manner. Additionally, vanadium ions were released from these nano-VOx films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices. Keywords: surface modification, red blood cell, antibacterial activities, vanadium, nano­materials

Keywords