Applied Sciences (Oct 2019)

Multilayer Perceptron-Based Phenological and Radiometric Normalization for High-Resolution Satellite Imagery

  • Dae Kyo Seo,
  • Yang Dam Eo

DOI
https://doi.org/10.3390/app9214543
Journal volume & issue
Vol. 9, no. 21
p. 4543

Abstract

Read online

Radiometric normalization is an essential preprocessing step that must be performed to detect changes in multi-temporal satellite images and, in general, relative radiometric normalization is utilized. However, most relative radiometric normalization methods assume a linear relationship and they cannot take into account nonlinear properties, such as the distribution of the earth’s surface or phenological differences that are caused by the growth of vegetation. Thus, this paper proposes a novel method that assumes a nonlinear relationship and it uses a representative nonlinear regression model—multilayer perceptron (MLP). The proposed method performs radiometric resolution compression while considering both the complexity and time cost, and radiometric control set samples are extracted based on a no-change set method. Subsequently, the spectral index is selected for each band to compensate for the phenological properties, phenological normalization is performed based on MLP, and the global radiometric properties are adjusted through postprocessing. Finally, a performance evaluation is conducted by comparing the results herein with those from conventional relative radiometric normalization algorithms. The experimental results show that the proposed method outperforms conventional methods in terms of both visual inspection and quantitative evaluation. In other words, the applicability of the proposed method to the normalization of multi-temporal images with nonlinear properties is confirmed.

Keywords