Energies (Aug 2020)

Short-Term Electricity Price Forecasting Based on Similar Day-Based Neural Network

  • Chun-Yao Lee,
  • Chang-En Wu

DOI
https://doi.org/10.3390/en13174408
Journal volume & issue
Vol. 13, no. 17
p. 4408

Abstract

Read online

This paper presents four refined distance models to the application of forecasting short-term electricity price namely Euclidean norm, Manhattan distance, cosine coefficient, and Pearson correlation coefficient. The four refined models were constructed and used to select the days, which are like a reference day in electricity prices and loads, called similar days in this study. Using the similar days, the electricity prices of a forecast day were further obtained by similar day regression (SDR) and similar day based artificial neural network (SDANN). The simulation results of the case of the PJM (Pennsylvania, New Jersey and Maryland) interchange energy market indicate the superiority and availability of the selection 45 framework days and three similar days based on Pearson correlation coefficient model.

Keywords