Entropy (Dec 2017)
Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions
Abstract
Most existing phenomenological heat conduction models are expressed by temperature and heat flux distributions, whose definitions might be debatable in heat conductions with strong non-equilibrium. The constitutive relations of Fourier and hyperbolic heat conductions are here rewritten by the entropy and entropy flux distributions in the frameworks of classical irreversible thermodynamics (CIT) and extended irreversible thermodynamics (EIT). The entropic constitutive relations are then generalized by Boltzmann–Gibbs–Shannon (BGS) statistical mechanics, which can avoid the debatable definitions of thermodynamic quantities relying on local equilibrium. It shows a possibility of modeling heat conduction through entropic constitutive relations. The applicability of the generalizations by BGS statistical mechanics is also discussed based on the relaxation time approximation, and it is found that the generalizations require a sufficiently small entropy production rate.
Keywords