Nanomaterials (Jul 2023)

Microgravimetric Modeling—A New Method for Extracting Adsorption Parameters of Functionalized MIL-101(Cr)

  • Xu Zhang,
  • Bo Tian,
  • Zhiheng Ma,
  • He Wang,
  • Zhixuan Cheng,
  • Jiaqiang Xu

DOI
https://doi.org/10.3390/nano13142072
Journal volume & issue
Vol. 13, no. 14
p. 2072

Abstract

Read online

As a volatile air pollutant, formaldehyde can enter people’s living environment through interior decoration, furniture and paint, causing serious harm to human health. Therefore, it is necessary to develop a sensor for the real-time detection of formaldehyde in low concentrations. According to the chemical interaction between amino groups and formaldehyde, a MIL-101(Cr) aminated-material-based formaldehyde cantilever sensor was prepared, of which ethylenediamine- functionalized MIL-101(Cr) named ED-MIL-101(Cr)) showed the best gas sensing performance. Using quasi-in situ infrared spectroscopy, ED-MIL-101(Cr) was found bound to formaldehyde through a Schiff base. The adsorption enthalpy of formaldehyde-bound ED-MIL-101(Cr) was −52.6 kJ/mol, which corresponds to weak chemical adsorption, so the material showed good selectivity. In addition, ED-MIL-101(Cr) has the most active sites, so its response value to formaldehyde is larger and it takes longer to reach saturation adsorption than bare MIL-101(Cr). Through the research on the gas sensing performance of functionalized MIL-101(Cr) material, we found that it has a strong application potential in the field of formaldehyde monitoring, and the material performance can be quantitatively and accurately evaluated through combining calculation and experimentation for understanding the gas sensing mechanism.

Keywords