Energies (Feb 2021)
The Impact of Supply Voltage Waveform Distortion on Non-Intentional Emission in the Frequency Range 2–150 kHz: An Experimental Study with Power-Line Communication and Selected End-User Equipment
Abstract
Knowledge of the conducted emissions in the frequency range 2–150 kHz contains some gaps related to the impact of the harmonics in the supply voltage on the nature of these emissions. It can be noticed that the conducted emissions from non-sinusoidal power supplies have not been studied sufficiently, and that the impact of this distortion may be greater than the generally known results of emission tests carried out under standardized test conditions. This paper is aimed at investigating experimental cases of the influence of supply voltage waveform distortion on non-intentional emission in the range 2–150 kHz and the efficiency of power line communication based on selected PRIME (PoweRline Intelligent Metering Evolution) power line communication (PLC) technology. A series of experimental laboratory studies were investigated, representing the operation of the investigated PLC system with different types of end-user equipment (LED—Light Emitting Diode, CFL—Compact Fluorescent Lamp, induction motor with frequency converter) working under a distorted supply voltage condition obtained by the programmable power supply for different scenarios of the admissible harmonics contribution in the range 0–2 kHz. The scenarios included limits defined in standards EN 50160 and IEC 61000-4-13. The researchers used spectral analysis with a notation to emission limits, compatibility levels, and mains signalling, as well as statistics of the PLC communication. The obtained results provide important conclusions, which may be applied both in the development of the design of the appliances in question and the higher frequency emission testing methods.
Keywords