Genes (Dec 2022)

Clonal Elimination of the Pathogenic Allele as Diagnostic Pitfall in <i>SAMD9L</i>-Associated Neuropathy

  • K. Eggermann,
  • R. Meyer,
  • M. Begemann,
  • D. Dey,
  • E. Bültmann,
  • I. Kurth,
  • G. C. Korenke,
  • C. Knopp

DOI
https://doi.org/10.3390/genes13122356
Journal volume & issue
Vol. 13, no. 12
p. 2356

Abstract

Read online

Background: Heterozygous gain-of-function variants in SAMD9L are associated with ataxia-pancytopenia syndrome (ATXPC) and monosomy 7 myelodysplasia and leukemia syndrome-1 (M7MLS1). Association with peripheral neuropathy has rarely been described. Methods: Whole-exome sequencing (WES) from DNA extracted from peripheral blood was performed in a 10-year-old female presenting with demyelinating neuropathy, her similarly affected mother and the unaffected maternal grandparents. In addition to evaluation of single nucleotide variants, thorough work-up of copy number and exome-wide variant allele frequency data was performed. Results: Combined analysis of the mother’s and daughter’s duo-exome data and analysis of the mother’s and her parents’ trio-exome data initially failed to detect a disease-associated variant. More detailed analysis revealed a copy number neutral loss of heterozygosity of 7q in the mother and led to reanalysis of the exome data for respective sequence variants. Here, a previously reported likely pathogenic variant in the SAMD9L gene on chromosome 7q (NM_152703.5:c.2956C>T; p.(Arg986Cys)) was identified that was not detected with standard filter settings because of a low percentage in blood cells (13%). The variant also showed up in the daughter at 32%, a proportion well below the expected 50%, which in each case can be explained by clonal selection processes in the blood due to this SAMD9L variant. Conclusion: The report highlights the specific pitfalls of molecular genetic analysis of SAMD9L and, furthermore, shows that gain-of-function variants in this gene can lead to a clinical picture associated with the leading symptom of peripheral neuropathy. Due to clonal hematopoietic selection, displacement of the mutant allele occurred, making diagnosis difficult.

Keywords