IEEE Journal of Translational Engineering in Health and Medicine (Jan 2013)

Wireless Wearable Multisensory Suite and Real-Time Prediction of Obstructive Sleep Apnea Episodes

  • Trung Q. Le,
  • Changqing Cheng,
  • Akkarapol Sangasoongsong,
  • Woranat Wongdhamma,
  • Satish T. S. Bukkapatnam

DOI
https://doi.org/10.1109/JTEHM.2013.2273354
Journal volume & issue
Vol. 1
pp. 2700109 – 2700109

Abstract

Read online

Obstructive sleep apnea (OSA) is a common sleep disorder found in 24% of adult men and 9% of adult women. Although continuous positive airway pressure (CPAP) has emerged as a standard therapy for OSA, a majority of patients are not tolerant to this treatment, largely because of the uncomfortable nasal air delivery during their sleep. Recent advances in wireless communication and advanced (“bigdata”) preditive analytics technologies offer radically new point-of-care treatment approaches for OSA episodes with unprecedented comfort and afforadability. We introduce a Dirichlet process-based mixture Gaussian process (DPMG) model to predict the onset of sleep apnea episodes based on analyzing complex cardiorespiratory signals gathered from a custom-designed wireless wearable multisensory suite. Extensive testing with signals from the multisensory suite as well as PhysioNet's OSA database suggests that the accuracy of offline OSA classification is 88%, and accuracy for predicting an OSA episode 1-min ahead is 83% and 3-min ahead is 77%. Such accurate prediction of an impending OSA episode can be used to adaptively adjust CPAP airflow (toward improving the patient's adherence) or the torso posture (e.g., minor chin adjustments to maintain steady levels of the airflow).

Keywords