Molecules (Mar 2018)

Utilizing a Spiro Core with Acridine- and Phenothiazine-Based New Hole Transporting Materials for Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes

  • Ramanaskanda Braveenth,
  • Il-Ji Bae,
  • Ji-Hun Han,
  • Wu Qiong,
  • Guk Seon,
  • Kanthasamy Raagulan,
  • Kihun Yang,
  • Young Hee Park,
  • Miyoung Kim,
  • Kyu Yun Chai

DOI
https://doi.org/10.3390/molecules23040713
Journal volume & issue
Vol. 23, no. 4
p. 713

Abstract

Read online

Two new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9H)-yl)-9,9′ spirobi[fluorene] (SP1) and 2,7-di(10H-phenothiazin-10-yl)-9,9′-spirobi[fluorene] (SP2), were designed and synthesized by using the Buchwald–Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs) with SP1 and SP2 as hole transporting materials. Both of the materials revealed improved device properties, in particular, the SP2-based device showed excellent power (34.47 lm/W) and current (38.41 cd/A) efficiencies when compare with the 4,4′-bis(N-phenyl-1-naphthylamino)biphenyl (NPB)-based reference device (30.33 lm/W and 32.83 cd/A). The external quantum efficiency (EQE) of SP2 was 13.43%, which was higher than SP1 (13.27%) and the reference material (11.45%) with a similar device structure. The SP2 hole transporting material provides an effective charge transporting path from anode to emission layer, which is explained by the device efficiencies.

Keywords