Scientific Reports (Apr 2024)

Highly biomimetic spiking neuron using SiGe heterojunction bipolar transistors for energy-efficient neuromorphic systems

  • Yijoon Kim,
  • Hyangwoo Kim,
  • Kyounghwan Oh,
  • Ju Hong Park,
  • Chang-Ki Baek

DOI
https://doi.org/10.1038/s41598-024-58962-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract We demonstrate a highly biomimetic spiking neuron capable of fast and energy-efficient neuronal oscillation dynamics. Our simple neuron circuit is constructed using silicon–germanium heterojunction based bipolar transistors (HBTs) with nanowire structure. The HBT has a hysteresis window with steep switching characteristics and high current margin in the low voltage range, which enables a high spiking frequency (~ 245 kHz) with low energy consumption (≤ 1.37 pJ/spike). Also, gated structure achieves a stable balance in the activity of the neural system by incorporating both excitatory and inhibitory signal. Furthermore, inhibition of multiple strengths can be realized by adjusting the integration time according to the amplitude of the inhibitory signal. In addition, the spiking frequency can be tuned by mutually controlling the hysteresis window in the HBTs. These results ensure the sparse activity and homeostasis of neural networks.