SciPost Physics (Mar 2023)

Low-temperature electron mobility in doped semiconductors with high dielectric constant

  • Khachatur G. Nazaryan, Mikhail Feigel'man

DOI
https://doi.org/10.21468/SciPostPhys.14.3.046
Journal volume & issue
Vol. 14, no. 3
p. 046

Abstract

Read online

We propose and study theoretically a new mechanism of electron-impurity scattering in doped seminconductors with large dielectric constant. It is based upon the idea of vector character of deformations caused in the crystalline lattice by any point defects siting asymmetrically in the unit cell. In result, local lattice compression due to the elastic deformations decay as $1/r^2$ with distance from impurity. Electron scattering (due to standard deformation potential) on such defects leads to low-temperature mobility $\mu(n)$ scaling with electron density $n$ of the form $\mu(n) \propto n^{-2/3}$ that is close to experimental observations on a number of relevant materials.