Intelligent Systems with Applications (Jun 2025)
A review of neuro-symbolic AI integrating reasoning and learning for advanced cognitive systems
Abstract
Neuro-symbolic AI represents the convergence of two principal paradigms in artificial intelligence: neural networks, which are efficient in data-driven learning, and symbolic reasoning, which offers explainability and logical inference. This hybrid methodology combines the adaptability of neural networks with symbolic AI's interpretability and formal reasoning abilities, which provide a practical framework for advanced cognitive systems. This paper analyzes the present condition of neuro-symbolic AI, emphasizing essential techniques that combine reasoning and learning. We explore models such as Logic Tensor Networks, Differentiable Logic Programs, and Neural Theorem Provers. The study analyzes their impact on the advancement of cognitive systems in natural language processing, robotics, and decision-making. The paper examines the challenges faced by neuro-symbolic AI, such as scalability, integration with multimodal data, and maintaining interpretability without compromising efficiency. By evaluating the strengths and weaknesses of many methodologies, we comprehensively understand the field's development and its potential to revolutionize intelligent systems. In addition, we identify emerging research areas, including the incorporation of ethical frameworks and the development of adaptive dynamic neuro-symbolic systems that respond in real-time. This review aims to guide future research by providing insights into the potential of neuro-symbolic AI to influence the development of the next generation of intelligent, explainable, and adaptive systems.