Viruses (Jul 2022)
Recombinant Bovine Herpesvirus Type I Expressing the Bovine Viral Diarrhea Virus E2 Protein Could Effectively Prevent Infection by Two Viruses
Abstract
Bovine respiratory disease complex (BRDC) is a comprehensive disease in cattle caused by various viral and bacterial infections. Among them, bovine herpesvirus type I (BoHV−1) and bovine viral diarrhea virus (BVDV) play important roles and have caused huge financial losses for the cattle industry worldwide. At present, vaccines against BRDC include trivalent attenuated BoHV−1, BVDV−1, and BVDV−2 live vaccines, BoHV−1 live attenuated vaccines, and BoHV−1/BVDV bivalent live attenuated vaccines, which have limitations in terms of their safety and efficacy. To solve these problems, we optimized the codon of the BVDV−1 E2 gene, added the signal peptide sequence of the BoHV−1 gD gene, expressed double BVDV−1 E2 glycoproteins in tandem at the BoHV−1 gE gene site, and constructed a BoHV−1 genetics-engineered vectored vaccine with gE gene deletion, named BoHV−1 gE/E2−Linker−E2+ and BoHV−1 ΔgE. This study compared the protective effects in BoHV−1, BoHV−1 ΔgE, BoHV−1 gE/E2−Linker−E2+, and BVDV−1 inactivated antigen immunized guinea pigs and calves. The results showed that BoHV−1 gE/E2−Linker−E2+ could successfully induce guinea pigs and calves to produce specific neutralizing antibodies against BVDV−1. In addition, after BoHV−1 and BVDV−1 challenges, BoHV−1 gE/E2−Linker−E2+ can produce a specific neutralizing antibody response against BoHV−1 and BVDV−1 infections. Calves immunized with this type of virus can be distinguished as either vaccinated animals (gE-) or naturally infected animals (gE+). In summary, our data suggest that BoHV−1 gE/E2−Linker−E2+ and BoHV−1 ΔgE have great potential to prevent BVDV−1 or BoHV−1 infection.
Keywords