Radiation Oncology (Jan 2021)

Impact of four-dimensional cone-beam computed tomography on target localization for gastric mucosa-associated lymphoid tissue lymphoma radiotherapy: reducing planning target volume

  • Yoshinobu Shimohigashi,
  • Ryo Toya,
  • Tetsuo Saito,
  • Yumiko Kono,
  • Yasuhiro Doi,
  • Yoshiyuki Fukugawa,
  • Takahiro Watakabe,
  • Tadashi Matsumoto,
  • Yudai Kai,
  • Masato Maruyama,
  • Natsuo Oya

DOI
https://doi.org/10.1186/s13014-020-01734-w
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background Radiotherapy of gastric mucosa-associated lymphoid tissue (MALT) lymphoma should be delivered to the entire stomach with planning target volume (PTV) that accounts for variations in stomach volume, respiratory movement, and patient set-up error. In this study, we evaluated whether the use of four-dimensional cone-beam computed tomography (4D-CBCT) reduces the PTV. Methods Eight patients underwent radiotherapy with 15 fractions of gastric MALT lymphoma using 4D-CBCT. PTV structures of 5–30 mm margins (5 mm intervals) from the clinical target volume (CTV) delineated based on the 4D-CT images (CTV-4D) were generated. For the target localization, we performed matching based on skin marking (skin matching), bone anatomy (bone matching), and stomach anatomy (4D soft-tissue matching) based on registration between planning CT and 4D-CBCT images from 10 phases. For each patient, we calculated the covering ratio (CR) of the stomach with variable PTV structures, based on the 4D-CBCT images, with a total of 150 phases [CR (%) = (number of covering phases/150 phases) × 100], for three target localization methods. We compared the CR values of the different target localization methods and defined the PTV with an average CR of ≥ 95% for all patients. Results The average CR for all patients increased from 17.9 to 100%, 19.6 to 99.8%, and 33.8 to 100%, in the skin, bone, and 4D soft-tissue matchings, respectively, as the PTV structures increased from 5 to 30 mm. The CR obtained by 4D soft-tissue matching was superior to that obtained by skin (P = 0.013) and bone matching (P = 0.008) for a PTV structure of 15 mm margin. The PTV required an additional margin of 20 mm (average CR: 95.2%), 25 mm (average CR: 99.1%), and 15 mm (average CR: 98.0%) to CTV-4D for the skin, bone, and 4D soft-tissue matchings, respectively. Conclusions This study demonstrates that the use of 4D-CBCT reduces the PTV when applying 4D soft-tissue matching, compared to skin and bone matchings. Additionally, bone matching does not reduce the PTV as compared with traditional skin matching.

Keywords