PLoS ONE (Jan 2015)

Consistent Richness-Biomass Relationship across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula.

  • Nelson Valdivia,
  • María José Díaz,
  • Ignacio Garrido,
  • Iván Gómez

DOI
https://doi.org/10.1371/journal.pone.0138582
Journal volume & issue
Vol. 10, no. 9
p. e0138582

Abstract

Read online

Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity with ecosystem properties (e.g., community biomass) has received less attention, despite the presence of sharp and dynamic environmental stress gradients that might modulate these properties. Here, we investigated whether the richness-biomass relationship in macrobenthic subtidal communities is still apparent after accounting for environmental stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4 across two environmental stress gradients: distance from nearest glaciers and subtidal depth (from 5 to 30 m). In general, community biomass increased with distance from glaciers and water depth. However, generalised additive models showed that distance from glaciers and depth accounted for negligible proportions of variation in the number of functional groups (i.e., functional richness) and community biomass when compared to taxonomic richness. Functional richness and community biomass were positive and saturating functions of taxonomic richness. Large endemic, canopy-forming brown algae of the order Desmarestiales dominated the community biomass across both gradients. Accordingly, differences in the composition of taxa accounted for a significant and large proportion (51%) of variation in community biomass in comparison with functional richness (10%). Our results suggest that the environmental factors here analysed may be less important than biodiversity in shaping mesoscale (several km) biomass patterns in this Antarctic system. We suggest that further manipulative, hypothesis-driven research should address the role of biodiversity and species' functional traits in the responses of Antarctic subtidal communities to environmental variation.