Iranica Journal of Energy and Environment (Jan 2013)
Seismic Analysis of Elevated Water Storage Tanks Subjected to Six Correlated Ground Motion Components
Abstract
In this work, rotational components of ground motion acceleration were defined according toimproved method from the corresponding available translational components based on transversely isotropicelastic wave propagation in the soil. With such improvement, it becomes possible to consider frequencydependent wave velocities on rotational components of ground motion. For this purpose, three translationalcomponents of El Centro earthquake (24 January 1951) were adopted to generate their relative rotationalcomponents based on SV and SH wave incidence by Fast Fourier transform with 4096 discrete frequencies.The translational and computed rotational motions were then applied to the concrete elevated water storagetanks with different structural characteristics and water elevations. The finite element method is used for thenonlinear analysis of water storage tanks considering the fluid-structure interaction using Lagrangian-Lagrangian approach and the concrete material nonlinearities have been taken into account through William-Warnke model. The nonlinear response of these structures considering the six components of ground motionshowed that the rotational components of ground motion can increase or decrease the maximum displacementand reaction force of the structure. These variations are depending on the frequency of structure andpredominant frequencies of translational and rotational components of ground motion.
Keywords