Scientific Reports (Aug 2025)
Next generation antimicrobial peptide disinfectant targeting biocide and vancomycin resistant staphylococcus aureus through integrated in Silico and in vitro validation
Abstract
Abstract The rise of biocide- and antibiotic-resistant microbes in hospital settings demands urgent and innovative strategies to curb the spread of antimicrobial resistance (AMR). This study presents an innovative disinfectant strategy that leverages antimicrobial peptides (APep) extracted from antimicrobial-producing (AMP) strains isolated from hospital environments under intense antibiotic pressure. Unlike traditional probiotic disinfectants that rely on live bacterial strains prone to AMR, this approach directly utilizes APep from non-resistant strains with a high antioxidant potential to combat AMR and oxidative stress. Candidate strains were selected based on antimicrobial susceptibility profiling, oxidative stress assays, and screening for antimicrobial activity against hospital-acquired pathogens. The active compounds were characterized using fourier-transform infrared (FTIR) spectroscopy, high-performance liquid chromatography (HPLC), liquid chromatography–tandem mass spectrometry (LC-MS/MS), and whole-genome sequencing. Biosynthetic pathways were explored using in silico analyses, including biosynthetic gene clusters (BGCs) mapping, APep prediction, and gene interaction network analyses. Bacillus paralicheniformis UAB33 was identified as a potent producer of bacitracin B1 (UB1), exhibiting strong activity against biocides and vancomycin-resistant Staphylococcus aureus (VRSA). Genomic analysis revealed 14 BGCs, including key non-ribosomal peptides (NRPs) such as bacitracin, lichenysin, and bacillibactin. A unique pathway involving bacA, bacB, and bacC genes, along with adjacent post-translationally modified peptides (RiPP) clusters, was elucidated to enhance bacitracin synthesis. UB1-infused disinfectant wipes significantly reduce microbial loads on hospital surfaces in vitro, demonstrating a promising strategy for mitigating resistant pathogens. This strategy presents a promising approach for curbing the spread of antibiotic resistance in healthcare settings and offers a scalable and innovative solution for infection control.
Keywords