SciPost Physics (Sep 2023)
Electron addition spectral functions of low-density polaron liquids
Abstract
Spectral functions are important quantities that contain a wealth of information about the quasiparticles of a system, and that can also be measured experimentally. For systems with electron-phonon coupling, good approximations for the spectral function are available only in the Migdal limit (at Fermi energies much larger than the typical phonon frequency, $E_F\gg \Omega$, requiring a large carrier concentration $x$) and in the single polaron limit (at $x=0$). Here we show that the region with $x\ll 1$ ($E_F 0.5$. Unlike in the Migdal limit, here 'polaronic physics' emerges already at moderate couplings. The relevance of these results for a spinful low-$x$ metal is also discussed.