Journal of Information Systems Engineering and Business Intelligence (Oct 2021)
Sentiment Analysis Towards Kartu Prakerja Using Text Mining with Support Vector Machine and Radial Basis Function Kernel
Abstract
Background: The introduction of Kartu Prakerja (Pre-employment Card) Programme, henceforth KPP, which was claimed to have launched in order to improve the quality of workforce, spurred controversy among members of the public. The discussion covered the amount of budget, the training materials and the operations brought out various reactions. Opinions could be largely divided into groups: the positive and the negative sentiments. Objective: This research aims to propose an automated sentiment analysis that focuses on KPP. The findings are expected to be useful in evaluating the services and facilities provided. Methods: In the sentiment analysis, Support Vector Machine (SVM) in text mining was used with Radial Basis Function (RBF) kernel. The data consisted of 500 tweets from July to October 2020, which were divided into two sets: 80% data for training and 20% data for testing with five-fold cross validation. Results: The results of descriptive analysis show that from the total 500 tweets, 60% were negative sentiments and 40% were positive sentiments. The classification in the testing data show that the average accuracy, sensitivity, specificity, negative sentiment prediction and positive sentiment prediction values were 85.20%; 91.68%; 75.75%; 85.03%; and 86.04%, respectively. Conclusion: The classification results show that SVM with RBF kernel performs well in the opinion classification. This method can be used to understand similar sentiment analysis in the future. In KPP case, the findings can inform the stakeholders to improve the programmes in the future. Keywords: Kartu Prakerja, Sentiment Analysis, Support Vector Machine, Text Mining, Radial Basis Function