AIP Advances (Jul 2020)

Water permeation pathways in laminated organic single-crystal devices

  • Ryo Nouchi,
  • Yoshiaki Ishihara,
  • Susumu Ikeda

DOI
https://doi.org/10.1063/5.0009912
Journal volume & issue
Vol. 10, no. 7
pp. 075312 – 075312-7

Abstract

Read online

Water permeation pathways in electronic devices should be eliminated for the suppression of operational instabilities. We investigated possible pathways in field-effect transistors based on a laminated single crystal (SC) of an organic semiconductor, rubrene. Water-induced instabilities were found to be more obvious with a thicker rubrene SC. Furthermore, under our simulation conditions, molecular dynamics calculations of water diffusion on a rubrene SC showed that no water molecules penetrated the SC. These findings indicate that a space at the SC/substrate interface is a dominant pathway. The present study clearly shows the importance of conformality of SC lamination onto the underlying substrate.