Energies (Sep 2024)

Advanced Optimal System for Electricity Price Forecasting Based on Hybrid Techniques

  • Hua Luo,
  • Yuanyuan Shao

DOI
https://doi.org/10.3390/en17194833
Journal volume & issue
Vol. 17, no. 19
p. 4833

Abstract

Read online

In the context of the electricity sector’s liberalization and deregulation, the accurate forecasting of electricity prices has emerged as a crucial strategy for market participants and operators to minimize costs and maximize profits. However, their effectiveness is hampered by the variable temporal characteristics of real-time electricity prices and a wide array of influencing factors. These challenges hinder a single model’s ability to discern the regularity, thereby compromising forecast precision. This study introduces a novel hybrid system to enhance forecast accuracy. Firstly, by employing an advanced decomposition technique, this methodology identifies different variation features within the electricity price series, thus bolstering feature extraction efficiency. Secondly, the incorporation of a novel multi-objective intelligent optimization algorithm, which utilizes two objective functions to constrain estimation errors, facilitates the optimal integration of multiple deep learning models. The case study uses electricity market data from Australia and Singapore to validate the effectiveness of the algorithm. The forecast results indicate that the hybrid short-term electricity price forecasting system proposed in this paper exhibits higher prediction accuracy compared to traditional single-model predictions, with MAE values of 7.3363 and 4.2784, respectively.

Keywords