Symmetry (Aug 2020)
Design of an IoT-Based Fuzzy Approximation Prediction Model for Early Fire Detection to Aid Public Safety and Control in the Local Urban Markets
Abstract
Fire monitoring in local urban markets within East Africa (EA) has been seriously neglected for a long time. This has culminated in a severe destruction of life and property worth millions. These rampant fires are attributed to electrical short circuits, fuel spillages, etc. Previous research proposes single smoke detectors. However, they are prone to false alarm rates and are inefficient. Also, satellite systems are expensive for developing countries. This paper presents a fuzzy model for early fire detection and control as symmetry’s core contribution to fuzzy systems design and application in computer and engineering sciences. We utilize a fuzzy logic technique to simulate the performance of the model using MATLAB, using six parameters: temperature, humidity, flame, CO, CO2 and O2 vis-à-vis the Estimated Fire Intensity Prediction (EFIP). Results show that, using fuzzy logic, a significant improvement in fire detection is observed with an overall accuracy rate of 95.83%. The paper further proposes an IoT-based fuzzy prediction model for early fire detection with a goal of minimizing extensive damage and promote intermediate fire suppression and control through true fire incidences. This solution provides for future public safety monitoring, and control of fire-related situations among the market community. Hence, fire safety monitoring is significant in providing future fire safety planning, control and management by putting in place appropriate fire safety laws, policies, bills and related fire safety practices or guidelines to be applied in public buildings, market centers and other public places.
Keywords