IEEE Access (Jan 2017)
3-D BLE Indoor Localization Based on Denoising Autoencoder
Abstract
Bluetooth low energy (BLE)-based indoor localization has attracted increasing interests for its low-cost, low-power consumption, and ubiquitous availability in mobile devices. In this paper, a novel denoising autoencoder-based BLE indoor localization (DABIL) method is proposed to provide high-performance 3-D positioning in large indoor places. A deep learning model, called denoising autoencoder, is adopted to extract robust fingerprint patterns from received signal strength indicator measurements, and a fingerprint database is constructed with reference locations in 3-D space, rather than traditional 2-D plane. Field experiments show that 3-D space fingerprinting can effectively increase positioning accuracy, and DABIL performs the best in terms of both horizontal accuracy and vertical accuracy, comparing with a traditional fingerprinting method and a deep learning-based method. Moreover, it can achieve stable performance with incomplete beacon measurements due to unpredictable BLE beacon lost.
Keywords