Physical Review X (Dec 2020)

Magnetic Moments of Short-Lived Nuclei with Part-per-Million Accuracy: Toward Novel Applications of β-Detected NMR in Physics, Chemistry, and Biology

  • R. D. Harding,
  • S. Pallada,
  • J. Croese,
  • A. Antušek,
  • M. Baranowski,
  • M. L. Bissell,
  • L. Cerato,
  • K. M. Dziubinska-Kühn,
  • W. Gins,
  • F. P. Gustafsson,
  • A. Javaji,
  • R. B. Jolivet,
  • A. Kanellakopoulos,
  • B. Karg,
  • M. Kempka,
  • V. Kocman,
  • M. Kozak,
  • K. Kulesz,
  • M. Madurga Flores,
  • G. Neyens,
  • R. Pietrzyk,
  • J. Plavec,
  • M. Pomorski,
  • A. Skrzypczak,
  • P. Wagenknecht,
  • F. Wienholtz,
  • J. Wolak,
  • Z. Xu,
  • D. Zakoucky,
  • M. Kowalska

DOI
https://doi.org/10.1103/PhysRevX.10.041061
Journal volume & issue
Vol. 10, no. 4
p. 041061

Abstract

Read online Read online

We determine for the first time the magnetic dipole moment of a short-lived nucleus with part-per-million (ppm) accuracy. To achieve this 2-orders-of-magnitude improvement over previous studies, we implement a number of innovations into our β-detected nuclear magnetic resonance (β-NMR) setup at ISOLDE at CERN. Using liquid samples as hosts, we obtain narrow, subkilohertz-linewidth, resonances, while a simultaneous in situ ^{1}H NMR measurement allows us to calibrate and stabilize the magnetic field to ppm precision, thus eliminating the need for additional β-NMR reference measurements. Furthermore, we use ab initio calculations of NMR shielding constants to improve the accuracy of the reference magnetic moment, thus removing a large systematic error. We demonstrate the potential of this combined approach with the 1.1 s half-life radioactive nucleus ^{26}Na, which is relevant for biochemical studies. Our technique can be readily extended to other isotopic chains, providing accurate magnetic moments for many short-lived nuclei. Furthermore, we discuss how our approach can open the path toward a wide range of applications of the ultrasensitive β-NMR in physics, chemistry, and biology.