Scientific Reports (Jul 2017)

Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth

  • Murugabaskar Balan,
  • Samik Chakraborty,
  • Evelyn Flynn,
  • David Zurakowski,
  • Soumitro Pal

DOI
https://doi.org/10.1038/s41598-017-05455-1
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Honokiol (HNK) is a small molecule with potent anti-inflammatory and anti-tumorigenic properties; yet the molecular targets of HNK are not well studied. Hyperactivation of the receptor tyrosine kinase c-Met and overexpression of the cytoprotective enzyme heme oxygenase-1 (HO-1) play a critical role in the growth and progression of renal cell carcinoma (RCC). Interestingly, the calcineurin inhibitor (CNI) cyclosporine A (CsA), an immunosuppressant used to prevent allograft rejection, can also increase the risk of RCC in transplant patients. We studied the potential role of c-Met signaling axis on CNI-induced renal tumor growth and tested the anti-tumor efficacy of HNK. Importantly, CNI treatment promoted c-Met induction and enhanced c-Met-induced Ras activation. We found that HNK treatment effectively down-regulated both c-Met phosphorylation and Ras activation in renal cancer cells. It inhibited the expression of both c-Met- and CNI-induced HO-1, and promoted cancer cell apoptosis. In vivo, HNK markedly inhibited CNI-induced renal tumor growth; and it decreased the expression of phospho-c-Met and HO-1 and reduced blood vessel density in tumor tissues. Our results suggest a novel mechanism(s) by which HNK exerts its anti-tumor activity through the inhibition of c-Met-Ras-HO-1 axis; and it can have significant therapeutic potential to prevent post-transplantation cancer in immunosuppressed patients.