Advanced Science (May 2023)

Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption

  • Eric N. Donders,
  • Kai V. Slaughter,
  • Christian Dank,
  • Ahil N. Ganesh,
  • Brian K. Shoichet,
  • Mark Lautens,
  • Molly S. Shoichet

DOI
https://doi.org/10.1002/advs.202300311
Journal volume & issue
Vol. 10, no. 13
pp. n/a – n/a

Abstract

Read online

Abstract Colloidal drug aggregates enable the design of drug‐rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo‐lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pKa of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH‐dependent endosomal disruption while maintaining bioactivity. Lipid‐stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pKa of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs—those with pKa values between 5.1 and 5.7—disrupted endo‐lysosomes without measurable phospholipidosis. Thus, by manipulating the pKa of colloid‐forming drugs, a tunable and generalizable strategy for endosomal disruption is established.

Keywords