PLoS ONE (Jan 2019)

Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon, Salmo salar.

  • Collins Kamunde,
  • Ravinder Sappal,
  • Tarek Mostafa Melegy

DOI
https://doi.org/10.1371/journal.pone.0219792
Journal volume & issue
Vol. 14, no. 7
p. e0219792

Abstract

Read online

Seaweeds represent a vast resource that remains underutilized as an ingredient in aquafeeds. Here we probed the effect of addition of AquaArom, a seaweed meal derived from brown seaweeds (Laminaria sp., kelp), to fish feed on growth performance, antioxidant capacity and temperature responsiveness of mitochondrial respiration. A commercial salmonid feed was mixed with 0 (control), 3, 6 and 10% seaweed and fed to Atlantic salmon (Salmo salar) smolts for 30 days. The smolts consumed more of the seaweed-supplemented food relative to the control and there were no mortalities. Compared with the control, the final fish weight, standard length, weight gain and SGR were higher in fish fed diets supplemented with the 3 and 10% seaweed, while growth performance for fish maintained on 6% seaweed remained neutral. Importantly, seaweed supplementation increased protein efficiency ratio (PER) and tended to improve food conversion ratio (FCR). Although the hepatosomatic and visceral indices did not change, whole gut and intestinal weights and lengths were higher in fish maintained on seaweed-supplemented diets suggesting increased retention time and a larger surface area for food digestion and nutrient absorption. Measurement of antioxidant status revealed that seaweed supplementation dose-dependently increased plasma total antioxidant capacity as well as the level of glutathione, and activities of catalase and superoxide dismutase in liver mitochondria. Moreover, seaweed supplementation reduced the effect of acute temperature rise on mitochondrial respiration and proton leak. Overall, these data suggest that AquaArom can be mixed with fish food up to 10% to increase food consumption and enhance growth performance, as well as to improve antioxidant capacity and alleviate adverse effects of stressors such as temperature in fish.