Energies (Aug 2018)

A Study to Investigate Fluid-Solid Interaction Effects on Fluid Flow in Micro Scales

  • Mingqiang Chen,
  • Linsong Cheng,
  • Renyi Cao,
  • Chaohui Lyu

DOI
https://doi.org/10.3390/en11092197
Journal volume & issue
Vol. 11, no. 9
p. 2197

Abstract

Read online

Due to micro-nanopores in tight formation, fluid-solid interaction effects on fluid flow in porous media cannot be ignored. In this paper, a novel model which can characterize micro-fluid flow in micro scales is proposed. This novel model has a more definite physical meaning compared with other empirical models. And it is validated by micro tube experiments. In addition, the application range of the model is rigorously analyzed from a mathematical view, which indicates a wider application scope. Based on the novel model, the velocity profile, the average flow velocity and flow resistance in consideration of fluid-solid interaction are obtained. Furthermore, the novel model is incorporated into a representative pore scale network model to study fluid-solid interactions on fluid flow in porous media. Results show that due to fluid-solid interaction in micro scales, the change rules of the velocity profile, the average flow velocity and flow resistance generate obvious deviations from traditional Hagen-Poiseuille’s law. The smaller the radius and the lower the displacement pressure gradient (∇P), the more obvious the deviations will be. Moreover, the apparent permeability in consideration of fluid-solid interaction is no longer a constant, it increases with the increase of ∇P and non-linear flow appears at low ∇P. This study lays a good foundation for studying fluid flow in tight formation.

Keywords