Journal of High Energy Physics (Apr 2022)

Stability of topological solitons, and black string to bubble transition

  • Ibrahima Bah,
  • Anindya Dey,
  • Pierre Heidmann

DOI
https://doi.org/10.1007/JHEP04(2022)168
Journal volume & issue
Vol. 2022, no. 4
pp. 1 – 34

Abstract

Read online

Abstract We study the existence of smooth topological solitons and black strings as locally-stable saddles of the Euclidean gravitational action of five dimensional Einstein-Maxwell theory. These objects live in the Kaluza-Klein background of four dimensional Minkowski with an S 1. We compute the off-shell gravitational action in the canonical ensemble with fixed boundary data corresponding to the asymptotic radius of S 1, and to the electric and magnetic charges that label the solitons and black strings. We show that these objects are locally-stable in large sectors of the phase space with varying lifetime. Furthermore, we determine the globally-stable phases for different regimes of the boundary data, and show that there can be Hawking-Page transitions between the locally-stable phases of the topological solitons and black strings. This analysis demonstrates the existence of a large family of globally-stable smooth solitonic objects in gravity beyond supersymmetry, and presents a mechanism through which they can arise from the black strings.

Keywords