Applied Sciences (Sep 2019)

Mineralogical and Geochemical Constraints of the REE Accumulation in the Almásfüzitő Red Mud Depository in Northwest Hungary

  • Tivadar M. Tóth,
  • Félix Schubert,
  • Béla Raucsik,
  • Krisztián Fintor

DOI
https://doi.org/10.3390/app9183654
Journal volume & issue
Vol. 9, no. 18
p. 3654

Abstract

Read online

Detailed mineralogical and geochemical study of red mud samples from Hungary suggests geological and geochemical processes that determine the spatial distribution of certain elements inside the red mud pitfalls. The major processes are the following: (1) Heavy mineral grains (anatase, rutile, titanomagnetite, etc.) tend to subside due to gravitational differentiation and at present accumulate in the deepest horizons of the pitfalls. (2) Kaolinite reacts to cancrinite under hyperalkaline conditions. (3) Due to diagenetic processes, goethite-cancrinite aggregates form in situ. (4) Light mineral grains (e.g., cancrinite) move upward. (5) Cancrinite transforms to calcite at the shallowest horizons, due probably to the reaction with atmospheric CO2. All these processes have a significant role in accumulation tendencies of different groups of elements inside the pitfalls. The behaviour of chalcophile elements and the HFSE elements follow common geochemical rules and remind features of the host bauxite or even its precursor igneous or metamorphic lithologies. The REEs and Sc are possibly adsorbed on goethite and in the channels of cancrinite. Based on linear mixing model calculations, the major container of these elements is cancrinite. The proportion of the REEs and Sc in the Ti-phases, carbonates, phosphates, zircon, etc. is subordinate relative to the amount accumulated by goethite and cancrinite.

Keywords