Open Medicine (Feb 2023)

UHRF1-induced connexin26 methylation is involved in hearing damage triggered by intermittent hypoxia in neonatal rats

  • Zhang Xingang,
  • Zheng Jishan,
  • Xu Huiqing,
  • Ma Zhaoxin

DOI
https://doi.org/10.1515/med-2023-0650
Journal volume & issue
Vol. 18, no. 1
pp. 415 – 22

Abstract

Read online

Ubiquitin-like with plant homeodomain and ring finger domains 1 (UHRF1) promotes the maintenance of established patterns of DNA methylation in mammalian cells. Extensive methylation of connexin26 (COX26) during hearing impairment has been demonstrated. The present study aims to determine whether UHRF1 can induce the methylation of COX26 in cochlea damaged by intermittent hypoxia (IH). After the establishment of the cochlear injury model through IH treatment or isolation of the cochlea containing Corti’s organ, pathological changes were observed via HE staining. Expressions of COX26 and UHRF1 were detected by quantitative reverse-transcription polymerase chain reaction and Western blot. The effect of COX26 methylation levels was analyzed by methylation-specific PCR (MSP). Phalloidin/immunofluorescence staining was used to observe structural changes. The binding relationship between UHRF1 and COX26 was verified by chromatin immunoprecipitation. IH caused cochlear damage, accompanied by increased methylation of COX26 and expression of UHRF1 in the cochlea of neonatal rats. CoCl2 treatment caused the loss of cochlear hair cells, downregulation and hypermethylation of COX26, abnormal upregulation of UHRF1, and disordered expressions of apoptosis-related proteins. UHRF1 in cochlear hair cells binds to COX26, and its knockdown upregulated COX26 level. Overexpressed COX26 partially alleviated the CoCl2-caused cell damage. UHRF1 induces COX26 methylation and aggravates the cochlear damage caused by IH.

Keywords