Neoplasia: An International Journal for Oncology Research (Oct 2007)

Targeting Antiapoptotic Bcl-2 Family Members with Cell-Permeable BH3 Peptides Induces Apoptosis Signaling, Death in Head, Neck Squamous Cell Carcinoma Cells

  • Rongxiu Li,
  • Amanda L. Boehm,
  • Michelle B. Miranda,
  • Sanjeev Shangary,
  • Jennifer R. Grandis,
  • Daniel E Johnson

DOI
https://doi.org/10.1593/neo.07394
Journal volume & issue
Vol. 9, no. 10
pp. 801 – 811

Abstract

Read online

Head, neck squamous cell carcinomas (HNSCCs) are frequently characterized by chemotherapy, radiation resistance, by overexpression of Bcl-XL, an antiapoptotic member of the Bcl-2 protein family. In this report, we examined whether cell-permeable peptides derived from the BH3 domains of proapoptotic Bax, Bad, or Bak could be used to target Bcl-XL and/or Bcl-2 in HNSCC cells, induce apoptotic death in these cells. To render the peptides cell-permeable, Antennapedia (Ant) or polyarginine (R8) peptide transduction domain was fused to the amino termini. Fluorescence microscopy of peptide-treated HNSCC cells revealed that the BH3 peptides colocalized with mitochondria, the site of Bcl-XL, Bcl-2 expression. By contrast, a mutant peptide (BaxE BH3) that cannot bind Bcl-XL or Bcl-2 was diffusely localized throughout the cytoplasm. Treatment of three HNSCC cell lines (1483, UM-22A, UM-22B) with the wild-type BH3 peptides resulted in loss of viability, induction of apoptosis, as assessed by 3-(4,5-dimethythiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays, annexin V staining. In general, Ant-conjugated peptides were more potent than R8-conjugated peptides, Bad BH3 peptide was typically more potent than Bax BH3 or Bak BH3. Treatment of purified HNSCC mitochondria with BH3 peptides resulted in robust release of cytochrome c. Thus, the relative apoptosis resistance of HNSCC cells is not due to a deficit in this step of the intrinsic, mitochondrialmediated apoptosis pathway. We conclude that cellpermeable BH3 peptides can be used to target Bcl-XL and/or Bcl-2 in HNSCC, that targeting of these proteins may have therapeutic value in the treatment of this disease.

Keywords