Scientific Reports (Nov 2023)
Quantum-aided secure deep neural network inference on real quantum computers
Abstract
Abstract Deep neural networks (DNNs) are phenomenally successful machine learning methods broadly applied to many different disciplines. However, as complex two-party computations, DNN inference using classical cryptographic methods cannot achieve unconditional security, raising concern on security risks of DNNs’ application to sensitive data in many domains. We overcome such a weakness by introducing a quantum-aided security approach. We build a quantum scheme for unconditionally secure DNN inference based on quantum oblivious transfer with an untrusted third party. Leveraging DNN’s noise tolerance, our approach enables complex DNN inference on comparatively low-fidelity quantum systems with limited quantum capacity. We validated our method using various applications with a five-bit real quantum computer and a quantum simulator. Both theoretical analyses and experimental results demonstrate that our approach manages to operate on existing quantum computers and achieve unconditional security with a negligible accuracy loss. This may open up new possibilities of quantum security methods for deep learning.