Actuators (Feb 2025)
Real-Time Localization for an AMR Based on RTAB-MAP
Abstract
This study aimed to develop a real-time localization system for an AMR (autonomous mobile robot), which utilizes the Robot Operating System (ROS) Noetic version in the Ubuntu 20.04 operating system. RTAB-MAP (Real-Time Appearance-Based Mapping) is employed for localization, integrating with an RGB-D camera and a 2D LiDAR for real-time localization and mapping. The navigation was performed using the A* algorithm for global path planning, combined with the Dynamic Window Approach (DWA) for local path planning. It enables the AMR to receive velocity control commands and complete the navigation task. RTAB-MAP is a graph-based visual SLAM method that combines closed-loop detection and the graph optimization algorithm. The maps built using these three methods were evaluated with RTAB-MAP localization and AMCL (Adaptive Monte Carlo Localization) in a high-similarity long corridor environment. For RTAB-MAP and AMCL methods, three map optimization methods, i.e., TORO (Tree-based Network Optimizer), g2o (General Graph Optimization), and GTSAM (Georgia Tech Smoothing and Mapping), were used for the graph optimization of the RTAB-MAP and AMCL methods. Finally, the TORO, g2o, and GTSAM methods were compared to test the accuracy of localization for a long corridor according to the RGB-D camera and the 2D LiDAR.
Keywords